®
www.adeept.com @

Adeept

Lesson 3 Introducing the Self-Balancing Function

2.1 Function Overview

The self-balancing function is developed based on MPU6050. After the function is enabled, you can
place the robot on a panel. Slowly tilt the panel and you can see the robot adjust the height of its legs

to keep balanced. When the function's working, the robot can't take any other actions.

2.2 Running the Self-Balancing Function

1. Start the DarkPaw Robot. It may take about 30-50s to boot.

2. After DarkPaw is turned on, open the Chrome browser on your mobile or computer, enter the IP
address of your Raspberry Pi and access port ":5000" into the IP address bar, like this:
192.168.3.44:5000. The web controller will then be displayed on the browser.

Adeept Bot Contorller

Video Move Control Hard Ware

Arm Control

STAND UP

MOTION GET

POLICE LIGHT
STEADY CAMERA

PWM INIT SET
WM FC Contro|

0 « SETPWM

START

COLOR

Ports Control
Pl P2 P3
Base Control Move Control Arm Control

W - move forward | - camera up
A-turn left J -lean left
S - move backward K - camera down
D - turn right L - lean right

U - stand up

0 - stay low

3. Click "STEADY CAMERA", and DarkPaw will keep a balance itself.

Support email: support@adeept.com .

B www.adeept.com @
Adeept

4. Click the button again to stop the function.

2.3 Main Program

The code of this tutorial lies in the SpiderG.py. Here only the structure of the program is mentioned.

The code run based on some function or parameters in the SpiderG py.

def ctrl_range(raw, max_genout, min_genout):

This function is used to limit the servo PWM to a certain range.

raw_output = max_genout
elif raw < min_genout:

1

2

3

4

5. if raw > max_genout:
6

7

8 raw_output = min_genout
9

else:
10. raw_output = raw
11. returnint(raw_output)
12.
13. def status_GenOut(height_input, pitch_input, roll_input):
14, "
15. Pose control function has been introduced in the previous chapter.
16. "

17. FL_input = wiggle_v*pitch_input + wiggle_v*roll_input

18. FR_input = wiggle_v*pitch_input - wiggle_v*roll_input

19.

20. HL_input = - wiggle_v*pitch_input + wiggle_v*roll_input

21. HR_input = - wiggle_v*pitch_input - wiggle_v*roll_input

22. defleg_FL_status():

23. goal_dict['FLB'] = FLB_init_pwm

24. goal_dict['FLM'] = ctrl_range(int(FLM_init_pwm + (height_input + FL_input)*FLM_direction),

25. max_dict['FLM'], min_dict['FLM'])
26. goal_dict['FLE'] = FLE_init_pwm
27.

28. defleg FR_status():
29. goal_dict['FRB'] = FRB_init_pwm
30. goal_dict['FRM'] = ctrl_range(int(FRM_init_pwm + (height_input + FR_input)*FRM_direction),

31. max_dict['FRM'], min_dict['FRM'])
32. goal_dict['FRE'] = FRE_init_pwm
33.

34. defleg HL status():

Support email: support@adeept.com [JJj

G

BEN www.adeept.com
Adeept
35. goal_dict['HLB'] = HLB_init_pwm
36. goal_dict['HLM'] = ctrl_range(int(HLM_init_pwm + (height_input + HL_input)*HLM_direction),
37. max_dict['FRM'], min_dict['FRM'])
38. goal_dict['HLE'] = HLE_init_pwm
39.
40. defleg_HR_status():
41. goal_dict['HRB'] = HRB_init_pwm
42. goal_dict['HRM'] = ctrl_range(int(HRM_init_pwm + (height_input + HR_input)*HRM_direction),
43. max_dict['FRM'], min_dict['FRM'])
44. goal_dict['HRE'] = HRE_init_pwm
45,
46. leg_FL_status()
47. leg_FR_status()
48. leg_HL_status()
49. leg_HR_status()
50. print(goal_dict['FLM'])
51.
52. def steady():
53. global sensor
54, "
55. Determining whether the self-stabilization function is turned on.
56. "
57. if steadyMode:
58. e
59. Determining whether the MPU6050 is connected.
60. "
61. if MPU_connection:
62. try:
63. e
64. Reading the data of MPU6050.
65. "
66. accelerometer_data = sensor.get_accel_data()
67. e
68. The data read by the Kalman filter algorithm.
69. "
70. X = accelerometer_data['x']
71. X = kalman_filter_X.kalman(X)
72. Y = accelerometer_datal['y']
73. Y = kalman_filter_Y.kalman(Y)
74. e
75. Calculating angle deviation.
76. "

Support email:

support@adeept.com .

B www.adeept.com @

Adeept
77. X_error = X-X_steady
78. Y_error = Y-Y_steady
79. mn
80. mpu_tor is the action threshold of the self-stabilization mode. If the deviation exceeds this thres

hold, the robot will start to move. If the deviation is less than this threshold, the robot will not move. Sinc
e the deviation is inevitable, in order to avoid the robot constantly shaking, we use this threshold to judge
whether angle compensation is required.

81. mnr

82. if abs(X_error)>mpu_tor or abs(Y_error)>mpu_tor:

83. mnin

84. The error is applied to the pose control function to compensate for the deviation. The P value is t

he proportional integral in automatic control. The larger the value, the more sensitive the robot movemen
ts. However, excessive proportional integral will cause the robot to overshoot and cause severe jitter.

85.

86. "

87. status_GenOut(0, X_error*P, Y_error*P)
88. e

89. The calculated target posture

90. "

91. direct_M_move()

92. except:

93. time.sleep(0.1)

94. e

95. There is a certain probability that the MPU6050 will cause a connection failure when performing

high-frequency reading. If the connection fails, then you can re-establish the 12C connection with the MPU
6050.

96. "

97. sensor = mpu6050(0x68)

Support email: support@adeept.com [JJj

	Lesson 3 Introducing the Self-Balancing Function

