www.adeept.com @
Adeept

Lesson 9 Transmit Image in Real Time

This tutorial introduces how to transmit images in real time via the Raspberry Pi.

9.1 Components & Parts

Raspberry Pi 1
Robot HAT 1
Camera 1

Camera Flex Cable (black) 1 s @ s

9.2 Transmitting via Flask-Video-Streaming

The Raspberry Pi robot features the real-time video and OpenCV functions. There are many methods
of transmitting videos captured by the Raspberry Pi camera via network in a real time manner, and

this tutorial introduces an open source project following the MIT License on Github:

https://github.com/miguelgrinberg/flask-video-streaming

Support email: support@adeept.com .

B vww.adeept.com @
Adeept

The project uses Flask and related dependencies which have been included in the installation scripts

for the Adeept robot. You may need to install them if your Raspberry Pi has run the script before.

The OpenCV part will not be involved here; the tutorial only introduces how to view the image of
the Raspberry Pi camera on other devices in real time. First, download the flask-video-streaming
project. You can clone on Github or download on your computer and transfer to the Raspberry P1i,

using the command on Raspberry Pi Command Line:

After flask-video-streaming is downloaded on the Raspberry Pi or transferred, run the file app.py in

the project:

Pay attention not to run by the command "sudo python3 flask-video-streaming/app.py", or there will

be an error of unfound *.jpeg file.

Open a web browser (Chrome for example) on a device on the same LAN of the Raspberry Pi, enter
in the address bar the Raspberry Pi's IP address and the video stream port number ":5000", as shown

below:

Then you can view the webpage created by the Raspberry Pi on your mobile or computer. Note that

by default, images of 3 numbers 1, 2, and 3 will loop instead of anything from the Raspberry Pi.

Support email: support@adeept.com .

BER www.adeept.com @
Adeept

Video Streaming Demonstration

If you can log into the page and 1, 2, and 3 images loop display, it indicates the flask program runs

well. Then you can change the file app.py to display videos collected by the Raspberry Pi's camera.

Here we use the nano built in Raspbian to open and edit the «pp.py. There's no need to edit in other

IDEs as only commenting or uncommenting involved.

1. Uncomment the code after opening app.py:

if os.environ.get('CAMERA"):

1
2 Camera = import_module('camera_' + os.environ['CAMERA']).Camera
3. else:
4

from camera import Camera

2. Add "/ at the beginning of the lines, or insert """ at the beginning and end of the paragraph

to comment. The code is changed as follows:

1. # if os.environ.get('CAMERA'):
2. # Camera = import _module('camera_' + os.environ['CAMERA']).Camera
3. # else:
4. # from camera import Camera
Or
| I 1. L

Support email: support@adeept.com .

B www.adeept.com @

Adeept

f os.environ.get('CAMERA"):
Camera = import_module('camera_

+ os.environ['CAMERA']).Camera
lse:
from camera import Camera

oUW

3. At last, uncomment the code Camera imported from camera_pi by deleting """ — pay

attention to delete the space after "#".

Code before change:

| 1. # from camera_pi import Camera

Code changed:

| 1. from camera_pi import Camera

4. Complete code of zpp.py changed as follows:

1. #!/usr/bin/env python

2. from importlib import import_module

3. import os

4. from flask import Flask, render_ template, Response
5.

6. # import camera driver

7.

8. if os.environ.get('CAMERA'):

9. Camera = import_module('camera_' + os.environ['CAMERA']).Camera
10. else:

11. from camera import Camera

12, '+

13.

14. # Raspberry Pi camera module (requires picamera package)
15. from camera_pi import Camera

16.

17. app = Flask(__name_)

18.

19.

20. @app.route('/")

21. def index():

22. """Video streaming home page."""

23. return render_template('index.html')

24.

25.

Support email: support@adeept.com [JJj

B www.adeept.com @
Adeept

26. def gen(camera):

27. """Video streaming generator function."""

28. while True:

29. frame = camera.get_frame()

30. yield (b'--frame\r\n'

31. b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n'")
32.

33.

34. @app.route('/video_feed')
35. def video_feed():

36. """Video streaming route. Put this in the src attribute of an img tag."""
37. return Response(gen(Camera()),

38. mimetype="multipart/x-mixed-replace; boundary=frame')

39.

40.

41. if __name__ == '__main__':

42. app.run(host='0.0.0.0"', threaded=True)

5. Press CTRL+X to exit after editing. A prompt will be shown asking you whether to save to

not. Type in Y and press Enter to save.

6. Next, run app.py.

7. Open a web browser (here we use Chrome as an example) on a device on the same LAN of
the Raspberry Pi, enter in the address bar the Raspberry Pi's IP address and the video stream port

number ":5000", as shown below:

8. Now you can view the webpage created by the Raspberry Pi on your mobile or computer.
After data is loaded successfully, it'll display the videos captured by the Raspberry Pi in real

time.

Support email: support@adeept.com .

B www.adeept.com @
Adeept

Video Streaming Demonstration

9. This function is based on the flask-video-streaming project from GitHub:

https://github.com/miguelgrinberg/flask-video-streaming

9.3 Processing Video Frames

Principle of Multithreaded Video Frames Processing

The OpenCV function is based on the flask-video-streaming project on GitHub; here we just changed

the camera opencv.py file for operations with OpenCV.

Single threaded video frames processing
Here we start with single threading for you to better understand why multithreading is needed for

processing OpenCV video frames. The process for single threading is as follows:

Support email: support@adeept.com .

https://github.com/miguelgrinberg/flask-video-streaming
https://github.com/miguelgrinberg/flask-video-streaming
https://github.com/miguelgrinberg/flask-video-streaming

BEAN www.adeept.com @

(et the camera screen

CpenCV processing video frames

Generate drawing information

Draw element

i

-~
Show video frame

First, capture an image frame from the camera, analyze the frame with OpenCV,

generate the information to be drawn, like the central position of the target or the text to be displayed
on the screen, draw accordingly, and then display the image which has been processed and drawn on

the webpage.

This whole process is inefficient as it needs to wait the OpenCV to implement the processing and
display on the screen for each frame before starting the next frame processing. It may cause a stuck

video transmission.

The process is as shown below:

Support email: support@adeept.com [JJj

B www.adeept.com @

Get the camera screen

Last frame processing Draw element

N 7

Show video frame

Generate drawing information

To increase frame rate, here we separate the analyzing of video frames from the

collection-display process and run on background thread to generate image drawing information.

The code is changed as below: (the OpenCV function is not included here to
explain the multi-threaded processing principle; refer to the file in the zip file

downloaded)

import os

import cv2

from base camera import BaseCamera
import numpy as np

import datetime

import time

import threading

import imutils

52 Badl) Sl 0 Bl &0 Rl =

10. class CVThread(threading. Thread):
1 1 . nmn

12. This class is used to process OpenCV's task of analyzing video frames in the background

Support email: support@adeept.com [JJj

BN www.adeept.com
Adeept
13.
14. def init (self, *args, **kwargs):
15. self.CVThreading = 0
16.
17. super(CVThread, self). _init _ (*args, **kwargs)
18. self. flag = threading.Event()
19. self. flag.clear()
20.
21.
22. def mode(self, imglnput):
23. "
24, This method is used to pass in video frames that need to be processed
25. "
26. self.imgCV = imgInput
27. self.resume()
28.
29.
30. def elementDraw(self,imglnput):
31. "
32. Draw elements on the screen
33. "
34, return imglnput
35.
36. def doOpenCV(self, frame image):
37. "
38. Add content to be processed by OpenCV here
39. "
40. self.pause()
41.
42.
43. def pause(self):
44, "
45. Block the thread and wait for the next frame to be processed
46. "
47. self. _ flag.clear()
48. self.CVThreading = 0
49.
50. def resume(self):
51. "
52. Resuming the thread
53. "
54, self. flag.set()

Support email:

support@adeept.com .

B www.adeept.com @

Adeept

55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.

def run(self):

nm

Processing video frames in a background thread
while 1:
self. flag.wait()
self.CVThreading = 1
self.doOpenCV(self.imgCV)

class Camera(BaseCamera):

video_ source =0

def init (self):
if os.environ.get('OPENCV_CAMERA_ SOURCE'):
Camera.set_video source(int(os.environ OPENCV_CAMERA SOURCE']))
super(Camera, self). init ()

(@staticmethod
def set_video_source(source):

Camera.video_source = source

(@staticmethod
def frames():
camera = cv2.VideoCapture(Camera.video_source)
if not camera.isOpened():
raise RuntimeError('Could not start camera.")

nm

Instantiate CVThread()
cvt = CVThread()
cvt.start()

while True:
read current frame

_, img = camera.read()

if cvt.CVThreading:

nm

If OpenCV is processing video frames, skip

m

Support email: support@adeept.com .

®
www.adeept.com @

Adeept
97. pass
98. else:
99. "
100. If OpenCV is not processing video frames, give the thread that processes the video frame a new video
frame and resume the processing thread
101. "
102. cvt.mode(img)
103. cvt.resume()
104. "
105. Draw elements on the screen
106. "
107. img = cvt.elementDraw(img)
108.
109. # encode as a jpeg image and return it
110. yield cv2.imencode('.jpg', img)[1].tobytes()

That's the code for multi-threaded OpenCV processing. In the subsequent part of introducing details
of the OpenCV function, we will only explain the method of video frame processing with OpenCV

and skip this part.

9.4 OpenCYV Function

— First, create two .py files in a same folder of the Raspberry Pi (they are already included in
the product download package for the Adeept Robot; refer to app.py and base camera.py),

with code as shown below:

App.py

#!/usr/bin/env python3
from importlib import import_module
import os

from flask import Flask, render_template, Response

from camera_opencv import Camera

S B B B> B

app = Flask(__name_)

=
= o

. def gen(camera):
12. while True:
frame = camera.get_frame()

[EEN
w

Support email: support@adeept.com .

®
B www.adeept.com @

Adeept
14, yield (b'--frame\r\n'
15. b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n'")
16.
17. @app.route('/")
18. def video_feed():
19. return Response(gen(Camera()),
20. mimetype="multipart/x-mixed-replace; boundary=frame')
21.
22.
23. if _name__ == '__main__"':
24, app.run(host='0.0.0.0"', threaded=True)

base_camera.py

1. import time

2. import threading

3. try:

4. from greenlet import getcurrent as get ident

5. except ImportError:

6. try:

7. from thread import get ident

8. except ImportError:

2 from thread import get ident

10.

1.

12. class CameraEvent(object):

13. """An Event-like class that signals all active clients when a new frame is
14. available.

5.

16. def _init_ (self):

17. self.events = {}

18.

19. def wait(self):

20. """Invoked from each client's thread to wait for the next frame."""
21. ident = get_ident()

22. if ident not in self.events:

23. # this is a new client

24. # add an entry for it in the self.events dict

25. # each entry has two elements, a threading.Event() and a timestamp
26. self.events[ident] = [threading.Event(), time.time()]

27. return self.events[ident][0].wait()

Support email: support@adeept.com [JJj

®
B www.adeept.com @

Adeept
28.
29. def set(self):
30. """Invoked by the camera thread when a new frame is available."""
31. now = time.time()
32. remove = None
33. for ident, event in self.events.items():
34, if not event[0].isSet():
35. # if this client's event is not set, then set it
36. # also update the last set timestamp to now
37. event[0].set()
38. event[1] = now
39. else:
40. # if the client's event is already set, it means the client
41. # did not process a previous frame
42. # if the event stays set for more than 5 seconds, then assume
43, # the client is gone and remove it
44, if now - event[1] > 5:
45. remove = ident
46. if remove:
47. del self.events[remove]
48.
49. def clear(self):
50. """Invoked from each client's thread after a frame was processed."""
51. self.events[get_ident()][0].clear()
52.
53.
54. class BaseCamera(object):
55. thread = None # background thread that reads frames from camera
56. frame = None # current frame is stored here by background thread
57. last access =0 # time of last client access to the camera
58. event = CameraEvent()
59.
60. def init (self):
61. """Start the background camera thread if it isn't running yet."""
62. if BaseCamera.thread is None:
63. BaseCamera.last_access = time.time()
64.
65. # start background frame thread
66. BaseCamera.thread = threading. Thread(target=self._thread)
67. BaseCamera.thread.start()
68.
69. # wait until frames are available

Support email: support@adeept.com [JJj

B www.adeept.com @

Adeept
70. while self.get frame() is None:
71. time.sleep(0)
72.
73. def get frame(self):
74. """Return the current camera frame."""
75. BaseCamera.last_access = time.time()
76.
7. # wait for a signal from the camera thread
78. BaseCamera.event.wait()
79. BaseCamera.event.clear()
80.
81. return BaseCamera.frame
82.

83. (@staticmethod
84. def frames():

85. """Generator that returns frames from the camera."""
86. raise RuntimeError("Must be implemented by subclasses.")
87.

88. @classmethod
89. def thread(cls):

90. """Camera background thread."""

91. print('Starting camera thread.")

92. frames_iterator = cls.frames()

93. for frame in frames_iterator:

94. BaseCamera.frame = frame

9s. BaseCamera.event.set() # send signal to clients

96. time.sleep(0)

97.

98. # if there haven't been any clients asking for frames in
99. # the last 10 seconds then stop the thread

100. if time.time() - BaseCamera.last_access > 10:

101. frames_iterator.close()

102. print('Stopping camera thread due to inactivity.")
103. break

104. BaseCamera.thread = None

When developing any function related with OpenCV in the following tutorial, you only need to
include the respective file in the same folder with and

and run in the Raspberry Pi command line.

Support email: support@adeept.com .

www.adeept.com @
Adeept

Open a web browser on the device under the same LAN with the Raspberry Pi, enter the Raspberry

Pi's IP address with the port :5000, as shown below:

9.5 Real-time video display on the web page

The video display in real time by web controller is implemented based on the OpenCV function as
mentioned above. A web controller is a web interface to control the robot product to perform various
actions and it can be applied on any device that is able to run a browser, including PC, mobile

phones, tablets, etc.

If you've completed all installations based on the instructional document, it will be quite easy to open

a web controller.
©® Check that your device is under the same LAN with the Raspberry Pi.
©® Obtain the Raspberry Pi's IP address.

©® Open a web browser (recommended to use Chrome in case of any possible incompatibility
with other browsers), enter the Raspberry Pi's IP address with the port :5000, for instance:
192.168.3.44:5000

C @ 192168344

Then the web controller will be loaded into the browser.

Support email: support@adeept.com .

B www.adeept.com @

Adeept Bot Contorller

Video Move Control Hard Ware

Arm Control
Actions
STAND UP STAY LOW
MOTION GET

LEAN-L LEAN-R
POLICE LIGHT

STEADY CAMERA

PWM INIT SET
PWM FC Control
0 < SETPWM
2] St e START

COLOR

Ports Control
Instruction

Base Control Move Control Arm Control

W - move forward | -camera up
A-turn left J-lean left
S - move backward K - camera down
D - turn right L - lean right

U - stand up

O - stay low

The video window on the top left corner shows the images from the Raspberry Pi camera. Modules
on the web controller may vary from products. More details of the modules will be explained

subsequently.

Support email: support@adeept.com [JJj

	Lesson 9 Transmit Image in Real Time
	Principle of Multithreaded Video Frames Processing
	Single threaded video frames processing
	Multi-threaded video frames processing

