
Support email:

1

Getting to Know Gait of the DarkPaw Robot

Introduce Robot Gaits

 For a quadruped robot, the gait generation method is almost the most complicated part of the

program because it needs to coordinate dozens of servos to move at the same time. Keeping

every moment walking forward and backward, there should be at least three stance legs, which

means only one leg can be in the swing phase at any moment, and at least three legs should be in

the support pair.

 In order to make it more intuitive, we represent the position of each leg of the robot as 1, 2, 3, 4，

5, 6, 7, 8 respectively. Among them, position 1 is the swing pair, and the rest are the support

pairs. The number 2 and 8 represents the two endpoints of the support pair, and the number 3, 4,

5, 6, 7 are the interpolation between the two support pairs. The actual position spacing

represented by adjacent numbers is the same.

 Taking forward heading of the robot as the forward direction, we name the left front leg `I`, the

left hind leg `II`, the right front leg `III`, and the right hind leg `IV`.

 In order to coordinate the gait of the four legs, we use a global gait parameter. This parameter is

used to coordinate the position of the four legs at a certain moment, as shown in the following

table.

Code\Global Gait 1 2 3 4 5 6 7 8

I 1 2 3 4 5 6 7 8

II 3 4 5 6 7 8 1 2

III 5 6 7 8 1 2 3 4

IV 7 8 1 2 3 4 5 6



Support email:

2

 For example, when the global gait is 3, leg I is in the 3 position, leg II in the 5 position, leg III in

the 7 position, and leg IV in the 1 position.

 When the global gait changes to a cycle of 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3..., the robot moves forward.

When the global gait changes to a cycle of 8, 7, 6, 5, 4, 3, 2, 1, 8, 7 .., the robot moves backward.

 When the robot turns left or right, we use the diagonal gait for steering movement, which is

much simpler than the triangular gait.

Code\Global Gait 1 2 3 4

I 1 2 5 8

II 5 8 1 2

III 5 8 1 2

IV 1 2 5 8

 When the global gait changes to a cycle of 1, 2, 3, 4, 1, 2, ..., the robot moves forward in a

diagonal gait.

 When the global gait changes to a cycle of 4, 3, 2, 1, 4, 3, ..., the robot walks backward in a

diagonal gait.

 When the two legs on the right side of the robot move forward and the two on the left side do

backwards, the robot turns to the left.

 When the left two legs walk forward and the two on the right do backwards, the robot turns to

the right.



Support email:

3

Program of Gait Generation

The code of this tutorial lies in the SpiderG.py. Here only the structure of the program is mentioned.

The code run based on some function or parameters in the SpiderG.py.

1. def move_smooth_base(servo_name, goal_pwm, old_pwm, now_pos, total_range):

2. '''''

3. This function is used to control the gentle movement of the servo. It is the underlying
function of move_smooth_goal() and does not cause blocking.

4. '''

5. pwm_input = int(old_pwm+(goal_pwm-old_pwm)*now_pos/total_range)

6. pwm.set_pwm(servo_name, 0, pwm_input)

7. return pwm_input

8.
9.
10. def direct_M_move():

11. '''''

12. This function is used to control the fast movement of the servo without blocking.

13. '''

14. pwm.set_pwm(FLM_port, 0, goal_dict['FLM'])

15. pwm.set_pwm(FRM_port, 0, goal_dict['FRM'])

16. pwm.set_pwm(HLM_port, 0, goal_dict['HLM'])

17. pwm.set_pwm(HRM_port, 0, goal_dict['HRM'])

18. old_dict['FLM'] = goal_dict['FLM']

19. old_dict['FRM'] = goal_dict['FRM']

20. old_dict['HLM'] = goal_dict['HLM']

21. old_dict['HRM'] = goal_dict['HRM']

22.
23.
24. def move_smooth_goal():

25. '''''

26. This function is used to control the servo to move slowly to the target point. The bot
tom function is move_smooth_base().

27. This function will cause blocking, because the for loop is used to achieve the effect of sl
ow movement.

28. For more basic knowledge of slow motion of the servo, please refer to Controlling Slow Moti
on of the Servo.

29.
30. '''

31. global now_command

32.



Support email:

4

33. if gait_set == 0 or now_command == 'turnleft' or now_command == 'turnright':

34. '''''''

35. For the diagonal gait, since the global gait interpolation becomes less, the number
of interpolations between the two positions of the servo is multiplied by 3.

36.
37. '''

38. count_input = total_count*3

39. elif gait_set == 1:

40. '''''

41. For triangular gait, the number of interpolations between the two points of the ser
vo is unchanged.

42. '''

43. count_input = total_count

44.
45. for i in range(0, count_input):

46. '''''

47. count_input is the number of interpolations between the two points of the servo. The
higher the value, the slower the robot movement speed.

48. '''

49. if goal_command != now_command:

50. '''''

51. If the command changes, we exit the for loop to avoid blocking and reduce latency.

52. '''

53. update_old()

54. now_command = goal_command

55. return 1

56.
57. '''''

58. The following code is used to generate the position where the corresponding servo s
hould move.

59. '''

60. now_dict['FLB'] = move_smooth_base(FLB_port, goal_dict['FLB'], old_dict['FLB'], i,
count_input)

61. now_dict['FLM'] = move_smooth_base(FLM_port, goal_dict['FLM'], old_dict['FLM'], i,
count_input)

62. now_dict['FLE'] = move_smooth_base(FLE_port, goal_dict['FLE'], old_dict['FLE'], i,
count_input)

63.
64. now_dict['FRB'] = move_smooth_base(FRB_port, goal_dict['FRB'], old_dict['FRB'], i,

count_input)

65. now_dict['FRM'] = move_smooth_base(FRM_port, goal_dict['FRM'], old_dict['FRM'], i,



Support email:

5

count_input)

66. now_dict['FRE'] = move_smooth_base(FRE_port, goal_dict['FRE'], old_dict['FRE'], i,
count_input)

67.
68. now_dict['HLB'] = move_smooth_base(HLB_port, goal_dict['HLB'], old_dict['HLB'], i,

count_input)

69. now_dict['HLM'] = move_smooth_base(HLM_port, goal_dict['HLM'], old_dict['HLM'], i,
count_input)

70. now_dict['HLE'] = move_smooth_base(HLE_port, goal_dict['HLE'], old_dict['HLE'], i,
count_input)

71.
72. now_dict['HRB'] = move_smooth_base(HRB_port, goal_dict['HRB'], old_dict['HRB'], i,

count_input)

73. now_dict['HRM'] = move_smooth_base(HRM_port, goal_dict['HRM'], old_dict['HRM'], i,
count_input)

74. now_dict['HRE'] = move_smooth_base(HRE_port, goal_dict['HRE'], old_dict['HRE'], i,
count_input)

75. '''''

76. Changing this delay time can change the robot's movement speed. The longer the dela
y time, the slower the movement speed, but it will not become smoother. For smoother, you n

eed to increase the total_count variable.

77. '''

78. time.sleep(deley_time)

79.
80. '''''

81. Updating the final position of the servo as the initial point of the next gentle movemen
t.

82. '''

83. pwm.set_pwm(FLM_port, 0, goal_dict['FLM'])

84. pwm.set_pwm(FRM_port, 0, goal_dict['FRM'])

85. pwm.set_pwm(HLM_port, 0, goal_dict['HLM'])

86. pwm.set_pwm(HRM_port, 0, goal_dict['HRM'])

87. old_dict['FLB'] = goal_dict['FLB']

88. old_dict['FLM'] = goal_dict['FLM']

89. old_dict['FLE'] = goal_dict['FLE']

90.
91. old_dict['FRB'] = goal_dict['FRB']

92. old_dict['FRM'] = goal_dict['FRM']

93. old_dict['FRE'] = goal_dict['FRE']

94.
95. old_dict['HLB'] = goal_dict['HLB']

96. old_dict['HLM'] = goal_dict['HLM']



Support email:

6

97. old_dict['HLE'] = goal_dict['HLE']

98.
99. old_dict['HRB'] = goal_dict['HRB']

100. old_dict['HRM'] = goal_dict['HRM']

101. old_dict['HRE'] = goal_dict['HRE']

102.
103. old_dict['P'] = goal_dict['P']

104. old_dict['T'] = goal_dict['T']

105. return 0

106.
107.
108. def goal_GenOut(position_input, left_direction, right_direction):

109. '''''

110. This method is used for gait generation of quadruped robots. It is the code of the ga
it table introduced above.

111. This function can generate triangle gait and diagonal gait.

112. It can control the direction of the left leg and the right leg. 1 is forward, and -1 is b
ackward.

113. '''

114. def leg_FL(pos, direction_input):

115. '''''

116. Entering the pos parameter to generate the PWM value of the leg at that position,

117. it is the gait generation method of the left front leg.

118. '''

119. if pos == 1:

120. goal_dict['FLB'] = int(FLB_init_pwm + (wiggle_middle)*FLB_direction)

121. goal_dict['FLM'] = int(FLM_init_pwm + (wiggle_v - FL_height)*FLM_direction)

122. goal_dict['FLE'] = int(FLE_init_pwm + (wiggle_v + 0)*FLE_direction)

123. elif pos == 2:

124. goal_dict['FLB'] = int(FLB_init_pwm + (wiggle_middle + wiggle_h*direction_inpu
t)*FLB_direction)

125. goal_dict['FLM'] = int(FLM_init_pwm - FL_height*FLM_direction)

126. goal_dict['FLE'] = int(FLE_init_pwm)

127. else:

128. goal_dict['FLB'] = int(FLB_init_pwm + (wiggle_middle + (wiggle_h*(6-(pos-2))/
3 -

129. wiggle_h)*direction_i
nput)*FLB_direction)

130. goal_dict['FLM'] = int(FLM_init_pwm - FL_height*FLM_direction)

131. goal_dict['FLE'] = int(FLE_init_pwm)



Support email:

7

132. #print('FL: %d'%pos)

133. def leg_FR(pos, direction_input):

134. '''''

135. Entering the pos parameter to generate the PWM value of the leg at that position, i
t id the gait generation method of the right front leg.

136. '''

137. if pos == 1:

138. goal_dict['FRB'] = int(FRB_init_pwm + (wiggle_middle)*FRB_direction)

139. goal_dict['FRM'] = int(FRM_init_pwm + (wiggle_v - FR_height)*FRM_direction)

140. goal_dict['FRE'] = int(FRE_init_pwm + (wiggle_v + 0)*FRE_direction)

141. elif pos == 2:

142.
143. goal_dict['FRB'] = int(FRB_init_pwm + (wiggle_middle + wiggle_h*direction_inp

ut)*FRB_direction)

144. goal_dict['FRM'] = int(FRM_init_pwm - FR_height*FRM_direction)

145. goal_dict['FRE'] = int(FRE_init_pwm)

146. else:

147. goal_dict['FRB'] = int(FRB_init_pwm + (wiggle_middle + (wiggle_h*(6-(pos-2))/3 -

148. wiggle_h)*direction_i
nput)*FRB_direction)

149. goal_dict['FRM'] = int(FRM_init_pwm - FR_height*FRM_direction)

150. goal_dict['FRE'] = int(FRE_init_pwm)

151. #print('FR: %d'%pos)

152. def leg_HL(pos, direction_input):

153. '''''

154. Entering the pos parameter to generate the PWM value of the leg at that position,
it is the gait generation method of the right front leg.

155. '''

156. if pos == 1:

157. goal_dict['HLB'] = int(HLB_init_pwm + (-wiggle_middle)*HLB_direction)

158. goal_dict['HLM'] = int(HLM_init_pwm + (wiggle_v - HL_height)*HLM_direction)

159. goal_dict['HLE'] = int(HLE_init_pwm + (wiggle_v + 0)*HLE_direction)

160. elif pos == 2:

161. goal_dict['HLB'] = int(HLB_init_pwm + (-wiggle_middle + wiggle_h*direction_in
put)*HLB_direction)

162. goal_dict['HLM'] = int(HLM_init_pwm - HL_height*HLM_direction)

163. goal_dict['HLE'] = int(HLE_init_pwm)

164. else:

165. goal_dict['HLB'] = int(HLB_init_pwm + (-wiggle_middle + (wiggle_h*(6-(pos-2))
/3 -



Support email:

8

166. wiggle_h)*direction_
input)*HLB_direction)

167. goal_dict['HLM'] = int(HLM_init_pwm - HL_height*HLM_direction)

168. goal_dict['HLE'] = int(HLE_init_pwm)

169. #print('HL: %d'%pos)

170.
171. def leg_HR(pos, direction_input):

172. '''''

173. Entering the pos parameter to generate the PWM value of the leg at that position,
it is the gait generation method of the left hind leg.

174. '''

175. if pos == 1:

176. goal_dict['HRB'] = int(HRB_init_pwm + (-wiggle_middle)*HRB_direction)

177. goal_dict['HRM'] = int(HRM_init_pwm + (wiggle_v - HR_height)*HRM_direction)

178. goal_dict['HRE'] = int(HRE_init_pwm + (wiggle_v + 0)*HRE_direction)

179. elif pos == 2:

180. goal_dict['HRB'] = int(HRB_init_pwm + (-wiggle_middle + wiggle_h*direction_in
put)*HRB_direction)

181. goal_dict['HRM'] = int(HRM_init_pwm - HR_height*HRM_direction)

182. goal_dict['HRE'] = int(HRE_init_pwm)

183. else:

184. goal_dict['HRB'] = int(HRB_init_pwm + (-wiggle_middle + (wiggle_h*(6-(pos-2))
/3 -

185. wiggle_h)*direction_
input)*HRB_direction)

186. goal_dict['HRM'] = int(HRM_init_pwm - HR_height*HRM_direction)

187. goal_dict['HRE'] = int(HRE_init_pwm)

188. #print('HR: %d'%pos)

189. #print(position_input)

190. if gait_set == 0 or now_command == 'turnleft' or now_command == 'turnright':

191. '''''

192. Diagonal gait is generated here. You can refer to the diagonal gait table shown e
arlier in this chapter for the generation method.

193. '''

194. if position_input == 1:

195. leg_FL(1, left_direction)

196. leg_FR(5, right_direction)

197.
198. leg_HL(5, left_direction)

199. leg_HR(1, right_direction)

200. pass



Support email:

9

201. elif position_input == 2:

202. leg_FL(2, left_direction)

203. leg_FR(8, right_direction)

204.
205. leg_HL(8, left_direction)

206. leg_HR(2, right_direction)

207. pass

208. elif position_input == 5:

209. leg_FL(5, left_direction)

210. leg_FR(1, right_direction)

211.
212. leg_HL(1, left_direction)

213. leg_HR(5, right_direction)

214. pass

215. elif position_input == 8:

216. leg_FL(8, left_direction)

217. leg_FR(2, right_direction)

218.
219. leg_HL(2, left_direction)

220. leg_HR(8, right_direction)

221. pass

222. elif gait_set == 1:

223. '''''

224. The triangle gait is generated here. You can refer to the triangle gait table sho
wn earlier in this chapter for the generation method.

225. '''

226. if position_input == 1:

227. leg_FL(1, left_direction)

228. leg_FR(5, right_direction)

229.
230. leg_HL(3, left_direction)

231. leg_HR(7, right_direction)

232. pass

233. elif position_input == 2:

234. leg_FL(2, left_direction)

235. leg_FR(6, right_direction)

236.
237. leg_HL(4, left_direction)

238. leg_HR(8, right_direction)

239. pass

240. elif position_input == 3:

241. leg_FL(3, left_direction)



Support email:

10

242. leg_FR(7, right_direction)

243.
244. leg_HL(5, left_direction)

245. leg_HR(1, right_direction)

246. pass

247. elif position_input == 4:

248. leg_FL(4, left_direction)

249. leg_FR(8, right_direction)

250.
251. leg_HL(6, left_direction)

252. leg_HR(2, right_direction)

253. pass

254. elif position_input == 5:

255. leg_FL(5, left_direction)

256. leg_FR(1, right_direction)

257.
258. leg_HL(7, left_direction)

259. leg_HR(3, right_direction)

260. pass

261. elif position_input == 6:

262. leg_FL(6, left_direction)

263. leg_FR(2, right_direction)

264.
265. leg_HL(8, left_direction)

266. leg_HR(4, right_direction)

267. pass

268. elif position_input == 7:

269. leg_FL(7, left_direction)

270. leg_FR(3, right_direction)

271.
272. leg_HL(1, left_direction)

273. leg_HR(5, right_direction)

274. pass

275. elif position_input == 8:

276. leg_FL(8, left_direction)

277. leg_FR(4, right_direction)

278.
279. leg_HL(2, left_direction)

280. leg_HR(6, right_direction)

281. pass


	Getting to Know Gait of the DarkPaw Robot

