
support@adeept.com

1

Lesson 20 Local Speech Recognition

20.1 Overview

In this lesson, we will guide beginners to learn how the Raspberry Pi achieves localized

speech recognition. We will also conduct an in-depth analysis of its principles, helping

everyone to form a basic understanding of offline speech recognition.

20.2 Required Components

Components Quantity Picture

Raspberry Pi 1

Adeept Robot HAT V3.1 1

Microphone Module 1

20.3 Principle Introduction

Speech recognition consists of three main parts: acoustic model, language model, and decoder.

These three parts work together to enable the computer to accurately recognize and convert

speech signals into text or commands. Speech recognition technology is an interdisciplinary

field that combines knowledge from multiple fields such as psychology, physiology, acoustics,

and linguistics。

support@adeept.com

2

The working principle of speech recognition includes steps such as speech signal acquisition,

preprocessing, feature extraction, pattern matching, and result output. The following will

explain the working principles and related technologies of each step:

 Voice signal acquisition

Sound input device: converts the user's speech waveform into an analog electrical

signal through devices such as microphones, and then converts it into a digital signal

through an analog-to-digital converter (ADC).

Sampling and quantization: According to the Nyquist sampling law, analog signals are

sampled and quantized to ensure that digital signals can accurately represent the

original speech.

 Preprocessing

Noise reduction processing: Eliminate background noise and improve the quality of

speech signals. This can be achieved through various filters, such as low-pass filters,

high pass filters, and band-pass filters.

Endpoint detection: Determine the starting and ending positions of speech signals for

subsequent processing. Short term energy and short-term average zero crossing rate

are usually used to detect the boundaries of speech signals.

 Feature Extraction

Linear Predictive Cepstral Coefficients: Extracting feature parameters from speech

signals using LPC technology, which can describe the fundamental features of speech.

Mel frequency cepstral coefficients: Based on the auditory characteristics of the

human ear, feature parameters are extracted through a filter bank model and discrete

Fourier transform, and are widely used in modern speech recognition systems.

 Pattern matching

support@adeept.com

3

Acoustic model: Hidden Markov Model (HMM) is a mainstream method that

calculates the degree of matching between speech signals and models through state

transitions and observation probabilities.

Language model: The N-gram model is used to calculate the probability of word

sequences appearing, helping to determine the most likely recognition result. In

recent years, deep neural networks such as RNNLM have also been widely used for

training language models.

 Result output

Decoding and synthesis: Combining the scores of acoustic and language models, using

search algorithms to find the best word sequence, and finally outputting the

recognition results as text or executing corresponding commands.

Sherpa ncnn speech recognition:

Main functions: speech recognition, streaming speech recognition. Speak while recognizing.

No need to access the network, no need for data transmission, fully local recognition.

Recognition effect: The recognition speed is fast and the effect is good, but it only supports

WAV format audio. Other formats need to be converted before recognition.

20.4 Demonstration

1. Install the dependency library, and then enter the following command in the command

window:

sudo apt-get install -y swig portaudio19-dev python3-all-dev python3-pyaudio flac

sudo apt-get install alsa-utils libasound2-dev

support@adeept.com

4

sudo apt-get install -y git cmake

2. Build sherpa-ncnn directly on Raspberry Pi.

Firstly, we need to clone the repository named sherpa-ncnn from GitHub to Raspberry Pi.

sudo git clone https://github.com/k2-fsa/sherpa-ncnn

Switch to the newly cloned project directory sherpa-ncnn

cd sherpa-ncnn

Create a folder named 'build' in the project directory to store the compiled files

sudo mkdir build

https://github.com/k2-fsa/sherpa-ncnn

support@adeept.com

5

cd build

Configure the project's build process

sudo cmake \

-DCMAKE_BUILD_TYPE=Release \

-DCMAKE_C_FLAGS="-march=armv7-a -mfloat-abi=hard -mfpu=neon" \

-DCMAKE_CXX_FLAGS="-march=armv7-a -mfloat-abi=hard -mfpu=neon" \

..

Use the make tool for compilation. The -j6 option enables up to 6 compilation tasks to run

concurrently, thereby enhancing the compilation speed.

sudo make -j6

support@adeept.com

6

After construction, you will find executable files in the directory: bin

ls -lh bin/

Switch to the sherpa-ncnn directory first, and then download the voice model.

cd ../

sudo wget https://github.com/k2-fsa/sherpa-ncnn/releases/download/models/sherpa-

ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13.tar.bz2

Decompress the downloaded speech model.

sudo tar xvf sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13.tar.bz2

https://github.com/k2-fsa/sherpa-ncnn/releases/download/models/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13.tar.bz2
https://github.com/k2-fsa/sherpa-ncnn/releases/download/models/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13.tar.bz2

support@adeept.com

7

3.The environment required for using ncnn has now been configured, and you can start the

speech recognition. Your voice will be recognized and the result will be output to the console.

Real time speech recognition through microphone

./build/bin/sherpa-ncnn-microphone \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/tokens.txt \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/encoder_jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/encoder_jit_trace-

pnnx.ncnn.bin \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/decoder_jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/decoder_jit_trace-

pnnx.ncnn.bin \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/joiner_jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/joiner_jit_trace-

pnnx.ncnn.bin

support@adeept.com

8

If speech recognition cannot be achieved using the microphone command, then sherpa-

ncnn-alsa can be used.

Real time speech recognition through sherpa-ncnn-alsa

For instance, if the output is:

You can use the command `arecord -l` to check the sequence number of your sound card

device.

arecord -l

If you want to select card 2 and the device 0 on that card, please use:

plughw:2,0

In the example, a USB recording device is connected, and the sequence number of the sound

card is 2. plughw:2,0

support@adeept.com

9

sudo ./build/bin/sherpa-ncnn-alsa \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/tokens.txt \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/encoder_jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/encoder_jit_trace-

pnnx.ncnn.bin \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/decoder_jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/decoder_jit_trace-

pnnx.ncnn.bin \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/joiner_jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/joiner_jit_trace-

pnnx.ncnn.bin \

plughw:2,0 \

4 \

greedy_search

support@adeept.com

10

The sherpa-ncnn-alsa program is used to achieve low-latency streaming speech recognition

based on the ALSA audio driver, which is suitable for Linux systems. The main differences

from the previous sherpa-ncnn-microphone are as follows:

Audio Interface: It directly controls the audio device using ALSA (alsa-lib) instead of

PortAudio (a cross-platform library).

Device Selection: The input source is specified through the ALSA device name (such as

plughw:2,0), which is suitable for scenarios of embedded Linux or when precise control of

the sound card is required.

greedy_search:The decoding method can choose greedy_search or

modified_beam_search. Greedy search is faster in speed, but may not be as accurate as beam

search; Beam search is more accurate, but slower. You can choose the appropriate decoding

method according to your needs.

20.5 Speech Recognition Implementation Code

The use of speech recognition involves three files, namely Speech_Recognition.py,

Speech.py, and Text.py. Among them, Speech_Recognition.py is responsible for initiating

the execution of the other two files.The Speech.py file is responsible for starting the speech

recognition function and outputting the results to the output.txt file. The Text.py file is

responsible for reading speech recognition results from the output.txt file. text.py file and

print it to the terminal.

Speech_Recognition.py

01
02
03
04
05
06
07
08
09
10
11
12
13
14

#!/usr/bin/env/python
File name : Speech_Recognition.py
Website : www.Adeept.com
Author : Adeept
Date : 2025/03/13
import subprocess
import time
Define the paths to two Python programs to run
program1_path = "./Speech.py"
program2_path = "./Text.py"

Create two sub processes and run two Python programs separately
process1 = subprocess.Popen(["python3", program1_path])
time.sleep(3) # Waiting for speech recognition to start

support@adeept.com

11

15
16
17
18
19

process2 = subprocess.Popen(["python3", program2_path])

Waiting for two child processes to complete
process1.wait()
process2.wait()

Speech.py

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

#!/usr/bin/env/python
File name : Speech.py
Website : www.Adeept.com
Author : Adeept
Date : 2025/03/13
import os

def main():
cmd = "sudo /home/pi/sherpa-ncnn/build/bin/sherpa-ncnn-microphone \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/tokens.txt

\
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/encoder_jit_trace-pnnx.ncnn.param \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/encoder_jit_trace-pnnx.ncnn.bin \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/decoder_jit_trace-pnnx.ncnn.param \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/decoder_jit_trace-pnnx.ncnn.bin \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/joiner_jit_trace-pnnx.ncnn.param \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/joiner_jit_trace-pnnx.ncnn.bin"

You can also use the `sherpa-ncnn-alsa` command for speech recognition. Note that you need to
replace the `plughw:3,0` parameter with the serial number of your own sound card.

cmd = "sudo /home/pi/sherpa-ncnn/build/bin/sherpa-ncnn-alsa \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/tokens.txt

\
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/encoder_jit_trace-pnnx.ncnn.param \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/encoder_jit_trace-pnnx.ncnn.bin \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/decoder_jit_trace-pnnx.ncnn.param \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/decoder_jit_trace-pnnx.ncnn.bin \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/joiner_jit_trace-pnnx.ncnn.param \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-

13/joiner_jit_trace-pnnx.ncnn.bin \
plughw:3,0 \
4 \
greedy_search"

os.system(f"{cmd} > output.txt 2>&1") #Run a command-line program and save the output results to a
file named 'output. txt'

support@adeept.com

12

if __name__ == "__main__":
main()

Text.py

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

#!/usr/bin/env/python
File name : Text.py
Website : www.Adeept.com
Author : Adeept
Date : 2025/03/13
import time

file_position = 0
while True:

with open("output.txt", "r") as file: # Read the file named “output.txt”
file.seek(file_position)
new_lines = file.readlines() # Read all lines from the current file pointer position to the end

of the file
if new_lines:

for line in new_lines:
if "Started" in line:

print(line.split("Started")[-1].strip() + "\n")
elif file_position > 0: # Ensure we print lines after the first "Started"

print(line.strip())
file_position = file.tell()

time.sleep(3) # Read every 3 second

You can perform speech recognition by running the following command.

sudo cd adeept_picar-b2/examples/11_Speech_Recognition/

sudo python3 Speech_Recognition.py

	20.1 Overview
	20.2 Required Components
	20.3 Principle Introduction
	Sherpa ncnn speech recognition:

	20.4 Demonstration
	20.5 Speech Recognition Implementation Code

