www.adeept.com @
Adeept

Lesson 15 Transmit Image in Real Time

This tutorial introduces how to transmit images in real time via the Raspberry Pi.

15.1 Components & Parts

Raspberry Pi 1
Adeept Robot HAT V3.1 1
Camera 1

15.2 Transmitting via Flask-Video-Streaming

The Raspberry Pi robot features the real-time video and OpenCV functions. There are many
methods of transmitting videos captured by the Raspberry Pi camera via network in a real time

manner, and this tutorial introduces an open source project following the MIT License on

Github: https://github.com/miguelgrinberg/flask-video-streaming

The project uses Flask and related dependencies which have been included in the installation
scripts for the Adeept robot. You may need to install them if your Raspberry Pi has run the

script before.

support@adeept.com

B vww.adeept.com @
Adeept

The OpenCV part will not be involved here; the tutorial only introduces how to view the image
of the Raspberry Pi camera on other devices in real time. First, download the
flask-video-streaming project. You can clone on Github or download on your computer and

transfer to the Raspberry Pi, using the command on Raspberry Pi Command Line:

When the Raspberry Pi is configured with the robot software, the Raspberry Pi will
automatically run the webServer_ HAT_V3.1.py program. If you need to use the camera in other

programs, you need to terminate this program. Termination command:

After flask-video-streaming is downloaded on the Raspberry Pi or transferred, run the file

app.py in the project:

Pay attention not to run by the command "sudo python3 flask-video-streaming/app.py", or

there will be an error of unfound *.jpeg file.

Open a web browser (Chrome for example) on a device on the same LAN of the Raspberry Pi,
enter in the address bar the Raspberry Pi's IP address and the video stream port number

":5000", as shown below:

Then you can view the webpage created by the Raspberry Pi on your mobile or computer. Note
that by default, images of 3 numbers 1, 2, and 3 will loop instead of anything from the

Raspberry Pi.

support@adeept.com

BER www.adeept.com @

Adeept

Video Streaming Demonstration

If you can log into the page and 1, 2, and 3 images loop display, it indicates the flask program
runs well. Then you can change the file app.py to display videos collected by the Raspberry Pi's

camera.

Here we use the nano built in Raspbian to open and edit the app.py. There's no need to edit in

other IDEs as only commenting or uncommenting involved.

1. Uncomment the code after opening app.py:

if os.environ.get('CAMERA"):
Camera = import_module('camera_' + os.environ['CAMERA']).Camera
else:

BN e

from camera import Camera

nwrrm

2. Add "#" at the beginning of the lines, or insert at the beginning and end of the

paragraph to comment. The code is changed as follows:

1. #ifos.environ.get('CAMERA"):

2. # Camera = import_module('camera_' + os.environ['CAMERA']).Camera
3. #else:
4

from camera import Camera

Or

support@adeept.com

B www.adeept.com @

Adeept

f os.environ.get('CAMERA'):

Camera = import_module('camera_' + os.environ['CAMERA']).Camera
Ise:

from camera import Camera

ol wh e

3. At last, uncomment the code Camera imported from camera_pi by deleting "#" - pay

attention to delete the space after "#".

Code before change:

| 1. #from camera_pi import Camera

Code changed:

| 1. from camera_pi import Camera

4. Complete code of app.py changed as follows:

#1/usr/bin/env python
from importlib import import_module
import os

from flask import Flask, render_template, Response

import camera driver

if os.environ.get('CAMERA'):

O NA A WD

Camera = import_module('camera_' + os.environ['CAMERA']).Camera

. else:

-
_ o

from camera import Camera

o
B W N

. # Raspberry Pi camera module (requires picamera package)

Uy
Ul

. from camera_pi import Camera

==
N o

. app = Flask(_name_)

N ==
S ©®

. @app.route('/")
. defindex():

"""Video streaming home page."""

NN NN
S WP

return render_template('index.html")

support@adeept.com

B www.adeept.com @
Adeept

25.
26. def gen(camera):
27. ""Video streaming generator function."""

28. while True:

29. frame = camera.get_frame()

30. yield (b'--frame\r\n'

31. b'Content-Type: image/jpeg\r\n\r\n' + frame + b"\r\n")
32.

33.

34. @app.route('/video_feed")
35. defvideo_feed():
36. ""Video streaming route. Put this in the src attribute of an img tag."""

37. return Response(gen(Camera()),

38. mimetype="multipart/x-mixed-replace; boundary=frame")
39.

40.

41. if _name_ =='_main_"

42. app.run(host='0.0.0.0', threaded=True)

5. Press CTRL+X to exit after editing. A prompt will be shown asking you whether to save

to not. Type in Y and press Enter to save.

6. Next, run app.py.

7. Open a web browser (here we use Chrome as an example) on a device on the same LAN
of the Raspberry Pi, enter in the address bar the Raspberry Pi's IP address and the video

stream port number ":5000", as shown below:

8. Now you can view the webpage created by the Raspberry Pi on your mobile or
computer. After data is loaded successfully, it'll display the videos captured by the

Raspberry Pi in real time.

support@adeept.com

B www.adeept.com @
Adeept

Video Streaming Demonstration

9. This function is based on the flask-video-streaming project from GitHub:

https://github.com/miguelgrinberg/flask-video-streamin

15.3 Processing Video Frames

Principle of Multithreaded Video Frames Processing

The OpenCV function is based on the flask-video-streaming project on GitHub; here we just

changed the camera_opencv.py file for operations with OpenCV.

Single threaded video frames processing
Here we start with single threading for you to better understand why multithreading is needed

for processing OpenCV video frames. The process for single threading is as follows:

support@adeept.com

https://github.com/miguelgrinberg/flask-video-streaming
https://github.com/miguelgrinberg/flask-video-streaming
https://github.com/miguelgrinberg/flask-video-streaming

BEAN www.adeept.com @

(et the camera screen

CpenCV processing video frames

Generate drawing information

Draw element

i

-~
Show video frame

First, capture an image frame from the camera, analyze the frame with

OpenCV, generate the information to be drawn, like the central position of the target or the text
to be displayed on the screen, draw accordingly, and then display the image which has been

processed and drawn on the webpage.

This whole process is inefficient as it needs to wait the OpenCV to implement the processing
and display on the screen for each frame before starting the next frame processing. It may

cause a stuck video transmission.

The process is as shown below:

support@adeept.com

B www.adeept.com @

Get the camera screen

Last frame processing Draw element

N 7

Show video frame

Generate drawing information

To increase frame rate, here we separate the analyzing of video frames
from the collection-display process and run on background thread to generate image drawing

information.

The code is changed as below: (the OpenCV function is not included here to
explain the multi-threaded processing principle; refer to the file in the zip

file downloaded)

import os

import cv2

from base_camera import BaseCamera
import numpy as np

import datetime

import time

import threading

import imutils

© PN GEWN e

10. class CVThread(threading.Thread):

support@adeept.com

BN www.adeept.com

G

Adeept

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49,
50.
51.
52.

This class is used to process OpenCV's task of analyzing video frames in the background

def _init_(self, *args, **kwargs):
self.CVThreading = 0

super(CVThread, self).__init_(*args, **kwargs)
self._flag = threading.Event()
self._flag.clear()

def mode(self, imglnput):

This method is used to pass in video frames that need to be processed

self.imgCV = imglnput
self.resume()

def elementDraw(self,imglnput):

Draw elements on the screen

return imglnput

def doOpenCV(self, frame_image):

Add content to be processed by OpenCV here

self.pause()

def pause(self):

Block the thread and wait for the next frame to be processed

self._flag.clear()
self.CVThreading = 0

def resume(self):

Resuming the thread

support@adeept.com

BETH www.adeept.com @

Adeept
53.
54. self.__flag.set()
55.
56. def run(self):
57.
58. Processing video frames in a background thread
59.
60. while 1:
61. self.__flag.wait()
62. self.CVThreading = 1
63. self.doOpenCV (self.imgCV)
64.
65.

66. class Camera(BaseCamera):

67. video_source =0

68.

69. def _init_(self):

70. if os.environ.get("OPENCV_CAMERA_SOURCE"):

71. Camera.set_video_source(int(os.environ['OPENCV_CAMERA_SOURCE']))
72. super(Camera, self).__init_ ()
73.

74. @staticmethod

75. def set_video_source(source):
76. Camera.video_source = source
77.

78. @staticmethod

79. def frames():

80. camera = cv2.VideoCapture(Camera.video_source)
81. if not camera.isOpened():

82. raise RuntimeError('Could not start camera.")
83.

84. Instantiate CVThread()

85.

86. cvt = CVThread()

87. cvt.start()

88.

89. while True:

90. # read current frame

91. _ img = camera.read()

92.

93. if cvt.CVThreading:

94.

support@adeept.com

B www.adeept.com @

Adeept
95. If OpenCV is processing video frames, skip
96.
97. pass
98. else:
99.

100. If OpenCV is not processing video frames, give the thread that processes the video frame a new
video frame and resume the processing thread

101.

102. cvt.mode(img)

103. cvtresume()

104.

105. Draw elements on the screen

106.

107. img = cvt.elementDraw(img)

108.

1009. # encode as a jpeg image and return it
110. yield cv2.imencode('.jpg’, img)[1].tobytes()

That's the code for multi-threaded OpenCV processing. In the subsequent part of introducing
details of the OpenCV function, we will only explain the method of video frame processing with

OpenCV and skip this part.

15.4 OpenCV Function

- First, create two .py files in a same folder of the Raspberry Pi (they are already included
in the product download package for the Adeept Robot; refer to 2pp.py and

base_camera.py), with code as shown below:

App.py

#!/usr/bin/env python3

from importlib import import_module
import os

1
2
3
4
5. from flask import Flask, render_template, Response
6
7. from camera_opencv import Camera

8

9

. app = Flask(_name_)
10.
11. def gen(camera):

support@adeept.com

P www.adeept.com @

Adeept

12. while True:

13. frame = camera.get_frame()

14. yield (b'--frame\r\n'

15. b'Content-Type: image/jpeg\r\n\r\n' + frame + b"\r\n")
16.

17. @app.route('/"
18. defvideo_feed():
19. return Response(gen(Camera()),

20. mimetype="multipart/x-mixed-replace; boundary=frame")
21.

22.

23. if _name_ =='_main_"

24. app.run(host='0.0.0.0', threaded=True)

base_camera.py

1. importtime

2. import threading

3. try:

4. from greenlet import getcurrent as get_ident

5. except ImportError:

6. try:

7. from thread import get_ident

8. except ImportError:

9. from _thread import get_ident

10.

11.

12. class CameraEvent(object):

13. """An Event-like class that signals all active clients when a new frame is
14. available.

15. "

16. def_init_(self):

17. self.events = {}

18.

19. def wait(self):

20. """Invoked from each client's thread to wait for the next frame."""
21. ident = get_ident()

22. ifident not in self.events:

23. # this is a new client

24. # add an entry for it in the self.events dict

25. # each entry has two elements, a threading.Event() and a timestamp

support@adeept.com

BEEN www.adeept.com @

Adeept
26. self.events[ident] = [threading.Event(), time.time()]
27. return self.events[ident][0].wait()
28.
29. def set(self):
30. """Invoked by the camera thread when a new frame is available."""
31. now = time.time()
32. remove = None
33. for ident, event in self.events.items():
34. if not event[0].isSet():
35. # if this client's event is not set, then set it
36. # also update the last set timestamp to now
37. event[0].set()
38. event[1] = now
39. else:
40. # if the client's event is already set, it means the client
41. # did not process a previous frame
42. # if the event stays set for more than 5 seconds, then assume
43. # the client is gone and remove it
44, if now - event[1] > 5:
45. remove = ident
46. if remove:
47. del self.events[remove]
48.
49. def clear(self):
50. """Invoked from each client's thread after a frame was processed."""
51. self.events[get_ident()][0].clear()
52.
53.
54. class BaseCamera(object):
55. thread = None # background thread that reads frames from camera
56. frame = None # current frame is stored here by background thread
57. last_access =0 # time of last client access to the camera
58. event = CameraEvent()
59.
60. def_init_(self):
61. """Start the background camera thread if it isn't running yet."""
62. if BaseCamera.thread is None:
63. BaseCamera.last_access = time.time()
64.
65. # start background frame thread
66. BaseCamera.thread = threading.Thread(target=self._thread)
67. BaseCamera.thread.start()

support@adeept.com

BT www.adeept.com

Adeept

68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94,
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.

wait until frames are available
while self.get_frame() is None:
time.sleep(0)

def get_frame(self):

"""Return the current camera frame.

BaseCamera.last_access = time.time()

wait for a signal from the camera thread
BaseCamera.event.wait()
BaseCamera.event.clear()

return BaseCamera.frame

@staticmethod
def frames():

""""Generator that returns frames from the camera.

raise RuntimeError('Must be implemented by subclasses.")

@classmethod
def _thread(cls):
"""Camera background thread."""
print('Starting camera thread.")
frames_iterator = cls.frames()
for frame in frames_iterator:
BaseCamera.frame = frame
BaseCamera.event.set() # send signal to clients
time.sleep(0)

if there haven't been any clients asking for frames in
the last 10 seconds then stop the thread
if time.time() - BaseCamera.last_access > 10:
frames_iterator.close()
print('Stopping camera thread due to inactivity.")
break
BaseCamera.thread = None

support@adeept.com

B www.adeept.com @
Adeept

When developing any function related with OpenCV in the following tutorial, you only need to
include the respective camera opencv.py file in the same folder with app.py and base camera.py

and run app.py in the Raspberry Pi command line.

Open a web browser on the device under the same LAN with the Raspberry Pi, enter the

Raspberry Pi's IP address with the port :5000, as shown below:

15.5 Real-time Video Display on the Web Page

The video display in real time by web controller is implemented based on the OpenCV function

as mentioned above. A web controller is a web interface to control the robot product to
perform various actions and it can be applied on any device that is able to run a browser,

including PC, mobile phones, tablets, etc.

If you've completed all installations based on the instructional document, it will be quite easy

to open a web controller.
© Check that your device is under the same LAN with the Raspberry Pi.
© Obtain the Raspberry Pi's IP address.

© Ifyou terminate the Raspberry Pi auto-run program, you need to re-run the program,

run the command:

® Open a web browser (recommended to use Chrome in case of any possible
incompatibility with other browsers), enter the Raspberry Pi's IP address with the

port :5000, for instance: 192.168.3.44:5000

support@adeept.com

BT www.adeept.com @

Then the web controller will be loaded into the browser.

Adeept Bot Contorller

Move Control Hard Ware

CPU Temp 44.3°C

CPU Usage 16.1%

RAM Usage 14.7%

Arm Control .
Actions

MOTION GET
AUTO MATIC

KEEP DISTANCE
CVFL Control D —

TRACK LINE

SPEECH

FC Control

Radar Scan Control
START

COLOR

Instruction

Base Control Move Control Arm Control

W - move forward I-head up
A-tum left J - head left tum
S - move backward K - head down
D - turn right L - head right turn
PWM INIT SET
About Us ~ WM
| 0 SETPWM

The video window on the top left corner shows the images from the Raspberry Pi camera.

Modules on the web controller may vary from products. More details of the modules will be

explained subsequently.

support@adeept.com

	Lesson 15 Transmit Image in Real Time
	Principle of Multithreaded Video Frames Processing
	Single threaded video frames processing
	Multi-threaded video frames processing

