www.adeept.com

Lesson 20 Local Speech Recognition

20.1 Overview

In this lesson, we will guide beginners to learn how the Raspberry Pi achieves localized
speech recognition. We will also conduct an in-depth analysis of its principles, helping

everyone to form a basic understanding of offline speech recognition.

20.2 Required Components

Raspberry Pi 1 |
Adeept Robot HAT V3.1 1
Microphone Module 1

20.3 Principle Introduction

Speech recognition consists of three main parts: acoustic model, language model, and decoder.
These three parts work together to enable the computer to accurately recognize and convert
speech signals into text or commands. Speech recognition technology is an interdisciplinary

field that combines knowledge from multiple fields such as psychology, physiology, acoustics,

and linguistics,

support@adeept.com



B v ww.adeept.com

The working principle of speech recognition includes steps such as speech signal acquisition,
preprocessing, feature extraction, pattern matching, and result output. The following will

explain the working principles and related technologies of each step:
Voice signal acquisition

Sound input device: converts the user's speech waveform into an analog electrical
signal through devices such as microphones, and then converts it into a digital signal

through an analog-to-digital converter (ADC).

Sampling and quantization: According to the Nyquist sampling law, analog signals are
sampled and quantized to ensure that digital signals can accurately represent the

original speech.
Preprocessing

Noise reduction processing: Eliminate background noise and improve the quality of
speech signals. This can be achieved through various filters, such as low-pass filters,

high pass filters, and band-pass filters.

Endpoint detection: Determine the starting and ending positions of speech signals for
subsequent processing. Short term energy and short-term average zero crossing rate

are usually used to detect the boundaries of speech signals.
Feature Extraction

Linear Predictive Cepstral Coefficients: Extracting feature parameters from speech

signals using LPC technology, which can describe the fundamental features of speech.

Mel frequency cepstral coefficients: Based on the auditory characteristics of the
human ear, feature parameters are extracted through a filter bank model and discrete

Fourier transform, and are widely used in modern speech recognition systems.

Pattern matching

support@adeept.com



IER v w.adeept.com

Acoustic model: Hidden Markov Model (HMM) is a mainstream method that
calculates the degree of matching between speech signals and models through state

transitions and observation probabilities.

Language model: The N-gram model is used to calculate the probability of word
sequences appearing, helping to determine the most likely recognition result. In
recent years, deep neural networks such as RNNLM have also been widely used for

training language models.
Result output

Decoding and synthesis: Combining the scores of acoustic and language models, using
search algorithms to find the best word sequence, and finally outputting the

recognition results as text or executing corresponding commands.
Sherpa ncnn speech recognition:

Main functions: speech recognition, streaming speech recognition. Speak while recognizing.

No need to access the network, no need for data transmission, fully local recognition.

Recognition effect: The recognition speed is fast and the effect is good, but it only supports

WAV format audio. Other formats need to be converted before recognition.

1. Install the dependency library, and then enter the following command in the command

window:

sudo apt-get install -y swig portaudio19-dev python3-all-dev python3-pyaudio flac

sudo apt-get install alsa-utils libasound2-dev

support@adeept.com



B v \ww.adeept.com

2. Build sherpa-ncnn directly on Raspberry Pi.
Firstly, we need to clone the repository named sherpa-ncnn from GitHub to Raspberry Pi.

sudo git clone https://github.com/k2-fsa/sherpa-ncnn

1410 (from 2}

Switch to the newly cloned project directory sherpa-ncnn

cd sherpa-ncnn

Create a folder named 'build’ in the project directory to store the compiled files

sudo mkdir build

support@adeept.com


https://github.com/k2-fsa/sherpa-ncnn

BE v\ w.adeept.com

sudo mkdir build

Configure the project's build process

sudo cmake \

-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_C_FLAGS="-march=armv7-a -mfloat-abi=hard -mfpu=neon" \

-DCMAKE_CXX_FLAGS="-march=armv7-a -mfloat-abi=hard -mfpu=neon" \

r cmake

Use the make tool for compilation. The -j6 option enables up to 6 compilation tasks to run

concurrently, thereby enhancing the compilation speed.

sudo make -j6

support@adeept.com



B v \ww.adeept.com

After construction, you will find executable files in the directory: bin

Is -lh bin/

Switch to the sherpa-ncnn directory first, and then download the voice model.
cd ../

sudo wget https://github.com/k2-fsa/sherpa-ncnn/releases/download/models/sherpa-

ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13.tar.bz2

Decompress the downloaded speech model.

sudo tar xvf sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13.tar.bz2

support@adeept.com


https://github.com/k2-fsa/sherpa-ncnn/releases/download/models/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13.tar.bz2
https://github.com/k2-fsa/sherpa-ncnn/releases/download/models/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13.tar.bz2

www.adeept.com

m
& M

g 5

o

W

3.The environment required for using ncnn has now been configured, and you can start the

speech recognition. Your voice will be recognized and the result will be output to the console.

Real time speech recognition through microphone

./build/bin/sherpa-ncnn-microphone \
./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13 /tokens.txt \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/encoder_jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/encoder_jit_trace-

pnnx.ncnn.bin \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/decoder_jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/decoder_jit_trace-

pnnx.ncnn.bin \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13 /joiner_jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13 /joiner_jit_trace-

pnnx.ncnn.bin

support@adeept.com



B v vww.adeept.com

If speech recognition cannot be achieved using the microphone command, then sherpa-

ncnn-alsa can be used.
Real time speech recognition through sherpa-ncnn-alsa
For instance, if the output is:

You can use the command “arecord -I' to check the sequence number of your sound card

device.

arecord -1

If you want to select card 2 and the device 0 on that card, please use:

plughw:2,0

In the example, a USB recording device is connected, and the sequence number of the sound

card is 2. plughw:2,0

support@adeept.com



BER w\ww.adeept.com

sudo ./build/bin/sherpa-ncnn-alsa \
./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13 /tokens.txt \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/encoder _jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/encoder _jit_trace-

pnnx.ncnn.bin \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/decoder_jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13 /decoder_jit_trace-

pnnx.ncnn.bin \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13 /joiner_jit_trace-

pnnx.ncnn.param \

./sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13 /joiner_jit_trace-

pnnx.ncnn.bin \
plughw:2,0 \

4\

greedy_search

support@adeept.com



BT www.adeept.com

The sherpa-ncnn-alsa program is used to achieve low-latency streaming speech recognition
based on the ALSA audio driver, which is suitable for Linux systems. The main differences

from the previous sherpa-ncnn-microphone are as follows:

Audio Interface: It directly controls the audio device using ALSA (alsa-lib) instead of

PortAudio (a cross-platform library).

Device Selection: The input source is specified through the ALSA device name (such as
plughw:2,0), which is suitable for scenarios of embedded Linux or when precise control of

the sound card is required.

greedy_search:The decoding method can choose greedy_search or
modified_beam_search. Greedy search is faster in speed, but may not be as accurate as beam
search; Beam search is more accurate, but slower. You can choose the appropriate decoding

method according to your needs.

The use of speech recognition involves three files, namely Speech_Recognition.py,
Speech.py, and Text.py. Among them, Speech_Recognition.py is responsible for initiating
the execution of the other two files.The Speech.py file is responsible for starting the speech
recognition function and outputting the results to the output.txt file. The Text.py file is
responsible for reading speech recognition results from the output.txt file. text.py file and

print it to the terminal.

Speech_Recognition.py

01| #!/usr/bin/env/python

02| # File name : Speech_Recognition.py
03| # Website : www.Adeept.com

04 | # Author : Adeept

05 | # Date : 2025/03/13

06 | import subprocess

07 | import time

08 | # Define the paths to two Python programs to run

09 | programl_path = "./Speech.py"

10 = program2_path = "./Text.py"

11

12| # Create two sub processes and run two Python programs separately
13 | processl = subprocess.Popen(["python3", programl_path])

14 | time.sleep(3) # Waiting for speech recognition to start

support@adeept.com




B v ww.adeept.com

15| process2 = subprocess.Popen(["python3", program2_path])
16
17 | # Waiting for two child processes to complete
18 | processl.wait()
19 | process2.wait()
Speech.py
01| #!/usr/bin/env/python
02 # File name : Speech.py
03 | # Website : www.Adeept.com
04 | # Author : Adeept
05 | # Date : 2025/03/13
06 | import os
o7
08 | def main():
09 # cmd = "sudo /home/pi/sherpa-ncnn/build/bin/sherpa-ncnn-microphone \
10 # /home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/tokens.txt
11 \
12 # /home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
13| 13/encoder_jit_trace-pnnx.ncnn.param \
14 # /home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
15 13/encoder_jit_trace-pnnx.ncnn.bin \
16 # /home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
17 | 13/decoder_jit_trace-pnnx.ncnn.param \
18 # /home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
19 | 13/decoder_jit_trace-pnnx.ncnn.bin \
20 # /home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
21 13/joiner_jit_trace-pnnx.ncnn.param \
22 # /home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
23 13/joiner_jit_trace-pnnx.ncnn.bin"
24
25 # You can also use the “sherpa-ncnn-alsa’ command for speech recognition. Note that you need to
26 | replace the “plughw:3,0" parameter with the serial number of your own sound card.
27 cmd = "sudo /home/pi/sherpa-ncnn/build/bin/sherpa-ncnn-alsa \
28 /home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13/tokens.txt
29 \
30 /home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
31 13/encoder_jit_trace-pnnx.ncnn.param \
32 /home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
13/encoder_jit_trace-pnnx.ncnn.bin \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
13/decoder_jit_trace-pnnx.ncnn.param \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
13/decoder_jit_trace-pnnx.ncnn.bin \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
13/joiner_jit_trace-pnnx.ncnn.param \
/home/pi/sherpa-ncnn/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-
13/joiner_jit_trace-pnnx.ncnn.bin \
plughw:3,0 \
4\
greedy_search"
os.system(f"{cmd} > output.txt 2>&1") #Run a command-line program and save the output results to a
file named ‘'output. txt'

support@adeept.com




www.adeept.com

if __name__ == "__main__":

main()

Text.py

01 | #!/usr/bin/env/python

02 | # File name : Text.py

03 | # Website : www.Adeept.com
04 | # Author ¢ Adeept

05 | # Date 1 2025/03/13

06 | import time

07

08 | file_position = 0
09 | while True:

time.sleep(3) # Read every 3 second

10 with open("output.txt", "r") as file: # Read the file named “output.txt”

11 file.seek(file_position)

12 new_lines = file.readlines() # Read all lines from the current file pointer position to the end
13 | of the file

14 if new_lines:

15 for line in new_lines:

16 if "Started" in line:

17 print(line.split("Started")[-1].strip() + "\n")

18 elif file_position > @: # Ensure we print lines after the first "Started"
19 print(line.strip())

20 file_position = file.tell()

You can perform speech recognition by running the following command.

support@adeept.com




	20.1 Overview
	20.2 Required Components
	20.3 Principle Introduction
	Sherpa ncnn speech recognition:

	20.4 Demonstration
	20.5 Speech Recognition Implementation Code

