
support@adeept.com

1

Lesson 6 How to Control Buzzer

In this lesson, we will learn how to control Buzzer.

6.1 Components used in this Course

Components Quantity Picture

Raspberry Pi 1

Adeept Robot HAT V3.1 1

6.2 Introduction of Buzzer

What is a Buzzer?

The buzzer is an integrated electronic alarm device powered by DC power supply. It is widely

used in the sound production of computers, printers, copiers, alarms, electronic toys, vehicle

electronic equipment, telephones, timers and other equipment.

Buzzers are divided into active buzzers and passive buzzers.

There is no distinction between positive and negative for a passive buzzer. Similar to a speaker,

the sound can be achieved by loading electrical signals of different frequencies on the two pins.

The sounds emitted are different according to different frequencies.



support@adeept.com

2

The active buzzer is divided into positive and negative. It only needs to add a voltage signal to

the two legs to make a sound. The sound produced has a single tone and a fixed frequency.

Active buzzers have more oscillating structures than passive buzzers.

Adeept Robot HAT V3.1 has a passive buzzer onboard that can emit sounds of different

frequencies. The onboard buzzer can be controlled through the GPIO18 (BCM) pin.

6.3 How to Control Buzzer

Run the code

1. Remotely log in to the Raspberry Pi terminal.



support@adeept.com

3

2. Enter the command and press Enter to enter the folder where the program is located:

cd adeept_picar-b2/examples/

3. View the contents of the current directory file:

ls

4. Enter the command and press Enter to run the program:

Older versions of the Raspberry Pi OS include both Python2 and python3 by default.

In order to allow the program to run normally in the old version of the Raspberry Pi OS,

“python3” is used to run the program. Of course, in the new version of Raspberry Pi OS, you can

also use “python” commands to run programs.

In order to prevent users from misunderstandings, this textbook uses the "python3" command

to run the program by default.

sudo python3 02_buzzer.py



support@adeept.com

4

5. After running the program successfully, You will hear the buzzer sounding the tone of the

song. The program will terminate after a few seconds..

6. When you want to terminate the running program, you can press the shortcut key "Ctrl + C"

on the keyboard.

6.4 Main Code

Complete code refer to 02_buzzer.py.

1. #!/usr/bin/env python3

2. from gpiozero import TonalBuzzer

3. from time import sleep

4.
5. # Initialize a TonalBuzzer connected to GPIO18 (BCM)

6. tb = TonalBuzzer(18)

7.
8. # Define a musical tune as a sequence of notes and durations.

9. SONG = [

10. ["E5",0.3],["Eb5",0.3],

11. ["E5",0.3],["Eb5",0.3],["E5",0.3],["B4",0.3],["D5",0.3],["C5",0.3],

12. ["A4",0.6],[None,0.1],["C4",0.3],["E4",0.3],["A4",0.3],

13. ["B4",0.6],[None,0.1],["E4",0.3],["Ab4",0.3],["B4",0.3],

14. ["C5",0.6],[None,0.1],["E4",0.3],["E5",0.3],["Eb5",0.3],

15. ["E5",0.3],["Eb5",0.3],["E5",0.3],["B4",0.3],["D5",0.3],["C5",0.3],

16. ["A4",0.6],[None,0.1],["C4",0.3],["E4",0.3],["A4",0.3],

17. ["B4",0.6],[None,0.1],["E4",0.3],["C5",0.3],["B4",0.3],["A4",0.1]

18. ]

19.
20. def play(tune):

21. """

22. Play a musical tune using the buzzer.

23. :param tune: List of tuples (note, duration),



support@adeept.com

5

24. where each tuple represents a note and its duration.

25. """

26. for note, duration in tune:

27. print(note) # Output the current note being played

28. tb.play(note) # Play the note on the buzzer

29. sleep(float(duration)) # Delay for the duration of the note

30. tb.stop() # Stop playing after the tune is complete

31.
32. if __name__ == "__main__":

33. try:

34. play(SONG) # Execute the play function to start playing the tune.

35.
36. except KeyboardInterrupt:

37. # Handle KeyboardInterrupt for graceful termination

38. pass


	Lesson 6 How to Control Buzzer
	Run the code


